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Introduction

What is pyCPA?

Ápython implementation Compositional Performance Analysis

Átargets heterogeneous distributed systems

Ácalculates bounds on 

Áworst-case/best-case response times (WCRT/BCRT)

Áend-to-end latency, 

Áload, 

Ábuffer sizes

Áframework for building tailored research tools
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Outline

ÁBrief historyof (py)CPA

ÁFoundations –informal introductionof CPA

ÁSystem model

ÁIterative analysisflow

ÁpyCPAoverview

ÁCore

ÁAnalysis extensions

ÁHand-on sessionoverview
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Brief history of (py)CPA

Á2005–the SymTA/S approach [1]

Ácommercialisedby Symtavision(since 2016: Luxoft)

Á2010-2012–pragmatic implementation in python by J. Diemer and P. Axer

Áfree, open-source, extensible, for academic use

Á2012–pyCPApublished at WATERS [2]

Ásince then

Áuse of pyCPAfor prototyping new analyses (extensions), e.g.

ÁEthernet (AVB), CAN

ÁNoCs, gateways

Árunnables, task chains

Á…

Ámaintenance and minor improvements of pyCPAcore 

[1] R. Henia, A. Hamann, M. Jersak, R. Racu, K. Richter, and R. Ernst, “System Level Performance Analysis - the SymTA/S Approach”, IEE    
Proceedings Computers and Digital Techniques, 2005
[2] J. Diemer, P. Axerand R. Ernst, “Compositional Performance Analysis in Python with pyCPA”, 3rd International Workshop on 
Analysis Tools and Methodologies for Embedded Real-TImeSystems (WATERS), 2012



5th December 2017 | J. Schlatow | An introduction to pyCPA | Slide 5

Informal introduction to CPA

System model

ÁTasks and resources

ÁEvent model interfaces

Áeta/delta curves

Ástandard event models

CPA flow

Álocal scheduling analysis

Ábusy-window approach

Áevent model propagation

Ájitter propagation

Ábusy-times
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CPA system model

ÁResourcesĄ provide service (CPU time)

Áscheduled according to policy (e.g. round-robin)

ÁTasksĄ consume service

Áworst-case and best-case execution times (WCET/BCET)

Áphases:

ÁTask links Ą activation dependencies

Áflow of activation events (one task activates the other)

Áabstracted by event models

Resource

Task

Task

Resource

Task

execution

activation

completion
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Event model abstraction

processing

input events/ activationtrace output events/ activationtrace

Idea: An eventmodelisa worst-caseabstractionfrom the actualtrace.

+́/-(ɲǘ): minimum/maximum number of activations within any time window ɲǘ

+ɻ/-(n): maximum/minimum time interval between first and last activation of 
any sequence of n activations (pseudo-inverse to ́ +/-(ɲǘ))
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From traces to event models

+́/-(ɲǘ): Minimum/Maximum number of activations within any time window ɲǘ

+ɻ/-(n): Maximum/minimum time interval between first and last activation of 
any sequence of n activations (pseudo-inverse to ́ +/-(ɲǘ))

Example: ɖ+/-(5):

absolute time
ȹt=5

we see 1 events

Idea: Shift a window of lengthȹt=5 over the trace and count events
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From traces to event models

+́/-(ɲǘ): Minimum/Maximum number of activations within any time window ɲǘ

+ɻ/-(n): Maximum/minimum time interval between first and last activation of 
any sequence of n activations (pseudo-inverse to ́ +/-(ɲǘ))

Example: ɖ+/-(5):

absolute time
ȹt=5

we see 4 events

Idea: Shift a window of lengthȹt=5 over the trace and count events
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From traces to event models

+́/-(ɲǘ): Minimum/Maximum number of activations within any time window ɲǘ

+ɻ/-(n): Maximum/minimum time interval between first and last activation of 
any sequence of n activations (pseudo-inverse to ́ +/-(ɲǘ))

Example: ɖ+/-(5):

absolute time
ȹt=5

we see 3 events

Idea: Shift a window of lengthȹt=5 over the trace and count events
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From traces to event models

+́/-(ɲǘ): Minimum/Maximum number of activations within any time window ɲǘ

+ɻ/-(n): Maximum/minimum time interval between first and last activation of 
any sequence of n activations (pseudo-inverse to ́ +/-(ɲǘ))

Example: ɖ+/-(5):

absolute time

+́ (ɲǘ=5): 4
-́ (ɲǘ=5): 1
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From traces to event models

+́/-(ɲǘ): Minimum/Maximum number of activations within any time window ɲǘ

+ɻ/-(n): Maximum/minimum time interval between first and last activation of 
any sequence of n activations (pseudo-inverse to ́ +/-(ɲǘ))

Example: ɖ+/-(5):

absolute time

Similar approach to retrieve +ɻ/-(n): 
Measure distance between any sequence of n events

In fact: ʵ ŀƴŘ ʹ Ŏŀƴ ōŜ ŎƻƴǾŜǊǘŜŘ ƛƴǘƻ ŜŀŎƘ ƻǘƘŜǊΗ 
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From traces to event models

All traceswhichstaybetweenη+(Δt)/ -ɻ(n)and η-(Δt)/ +ɻ(n)satisfy the event model.

event model plots generated by pyCPA
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What if we don‘t have a trace

Standard event models:

Áperiodic(P)
-ɻ(n)=(n-1)*P

Áperiodicwith jitter (PJ)
-ɻ(n)=min(0,(n-1)*P-J)

Áperiodicwith jitter min. distance(PJd)
-ɻ(n)=min((n-1)*d,(n-1)*P-J)

Ásporadic(usingmin. interarrivaltime)

Ádefineyourown:
e.g. burstof c eventseveryT time.
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CPA overview

Event model abstraction renders analysis compositional

Áoutput event model can be computed from:

a) known input event model and

b) result of resource analysis

Ą iterative analysis flow

Resource

Task
input event model

ηin
+/-(Δt)

output event model
ηout

+/-(Δt)
Task
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CPA – iterative analysis flow

Step 1: Local analysis

ÁCompute each task’s worst-case behavior based on 
critical instant scenario.

ÁDerive task output event models.

Step 2: Global analysis

ÁPropagate event models to dependent tasks.

ÁGo to step 1 if any event model has changed.

ÁOtherwise, terminate.

(Step 3: Path analysis)

ÁCompute end-to-end latencies.

ÁE.g. sum of WCRTs.

Local

Scheduling Analysis

Input Event Models

Local

Scheduling Analysis

Local

Resource Analysis

Output Event Models

Convergence or

Non-Schedulability?

No

Environment Model

Path Analysis
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resumption

preemption

Local resource analysis

CPU1

T1

T2

T2

Scheduling policy: SPP

(Static Priority Preemptive)

T1 > T2

T1
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Busy window (SPP)

Level-i busy window: time intervalduringwhichthe resourceisbusyexecutingTi or 
anytaskwith priority higherthan Ti

ÁLargest (worst-case) busy window is computed from critical instant assumption!

T2

T1

preemption

resumption

level-2 busy windowlevel-2 busy window
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Busy-window analysis based on critical instant

T1

T2

largestlevel-2 busywindow

δ-
1(2)

δ-
1(4)

δ-
1(3)

δ-
2(2)

worst-case response time
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Response times

T1

T2

δ-
2(2)

Ὑ ÍÁØὄή  ή worst-case response time found among busy times B(q)

ὄρ

ὄς

B(2)-δ-(2)

B(1)-δ-(1)
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Local resource analysis

Summary

Ábusy-window analysis depends on scheduler (e.g. round robin, SPP, SPNP, etc.)

Ábusy times are used to calculate worst-case/best-case response times ὙȾ

Áoutput event models can be computed from busy-window analysis

Ájitter propagation:

Á ὲ  ὲ ὐ

Áwith output jitter ὐ Ὑ Ὑ

Ábetter: Derive event model from output trace that results from busy times 
and input event model.

Ásee [3]

[3] S. Schlieckerand R. Ernst, “A Recursive Approach to End-To-End Path Latency Computation in Heterogeneous Multiprocessor 
Systems”, Proc. 7th International Conference on Hardware Software Codesignand System Synthesis (CODES-ISSS), 2009
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pyCPA core

What comes with pyCPA:

ÁCPA system model

Áevent models (incl. transformation between eta/delta functions) 

Álocal resource analyses (SPP, SPNP, round robin, TDMA, etc.)

Ácalculation/propagation of output event models

Áiterative analysis kernel

Ápath analyses

Ávisualisation

Áplotting of event models

Ásystem graphs

ÁGantt charts (SPP/SPNP only)

Ą CPA framework for researchers, not a tool for end users
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pyCPA model

Resource

Task

Task

Resource

Taskη+/-(Δt)

System

Resource Task

EventModelScheduler

pyCPAClasses(simplified)CPA components

other classes
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Setting up a system

ÁEasiest way to model systems: Python code

ÁInstantiate system model

ÁInstantiate and bind

ÁResources

ÁTasks

ÁLink dependent 
tasks

ÁInstantiate event
models for tasks
with no predecessor

ÁOptional:

ÁAdd paths for latency
analysis

ÁAdd constraints

System graph generated by pyCPA from system model
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Analysis of a system

ÁSimply call analysis.analyze_system ()

ÁResults are returned in a dictionary, indexed by task names

ÁMore detailed analyses (e.g. path latency) are called separately

ÁResults can be visualized

ÁGantt charts of critical instant
scenario

ÁPlots of results via matplotlib
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Additional concepts and analyses

Junctions and forks

Áarbitrary strategies for joining/forking event models

Limited event-model propagation

Áevent-model propagation only at resource boundaries

Path analyses

Áevent-triggered paths (event chains)

Ábaseline: sum of WCRTs

Áimprovement for pipelined chains (pay burst only once)

Átime-triggered paths (cause-effect chains)

Ásum of WCRTs + sampling delay

Ą Stable framework for (almost) arbitrary analysis extensions.
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pyCPA analysis extensions
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Extension overview

Quite a few model and analysis extensions have been developed over the past 
years, e.g.:

ÁCAN

ÁEthernet AVB

ÁNoCs

ÁGateways (multiplexing/demultiplexing)

ÁTask-chain busy-window 
(propagation at resource boundaries)

ÁRunnables

Áetc.

Not all of them are publicly available (please ask the authors for academic use).

technology-specific model layer, e.g.:
Á frames = communication tasks
Á output ports = communication resources
Á traffic streams = paths

resource-analysis replacements
new propagation methods,
system-model refinements, etc.
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Example extension: task-chain analysis

Standard CPA:

Drawbacks:

Áinterference accounted multiple times (in each busy window)

Ą pessimistic WCRTs

Ą (too) many iterations

Áevent models get increasingly ‘bursty’ along the path

Resource

††

††

Resource

†

†Input
event model

Output
event model

propagated
event models

busy-window 
analyses

propagated
event models
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Example extension: task-chain analysis

Task-chain busy-window analysis:

Benefits:

Áconsiders transactional chains, blocking relations

Ásignificantly better WCRTs and end-to-end latencies (and faster analysis)

Usage:

Resource

††

††

Resource

†

†Input
event model

Output
event model

propagated
event models

sequence
charts

thread
communication

(GraphML)

enriched
task graph
(GraphML)

ANALYZE
manual automated

(OS-specific)
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What to expect in the hands-on session?

The basics: 

Ámodelling and analyzing a system

Áplotting

Ápath analysis

And more: use of junctions custom fork strategy

custom propagation

custom scheduler



5th December 2017 | J. Schlatow | An introduction to pyCPA | Slide 32

Thank you for your attention.

Source code:

https://bitbucket.org/pycpa/

Docs:

http://pycpa.readthedocs.io/en/latest/

https://bitbucket.org/pycpa/
http://pycpa.readthedocs.io/en/latest/

