
Platzhalter für Bild, Bild auf Titelfolie hinter das Logo einsetzenPlatzhalter für Bild, Bild auf Titelfolie hinter das Logo einsetzen

pyCPA – A pragmatic implementation of Compositional
Performance Analysis

Jonas Diemer, Philip Axer, Daniel Thiele, Johannes Schlatowet al.

5th December 2017 | J. Schlatow | An introduction to pyCPA | Slide 2

Introduction

What is pyCPA?

Ápython implementation Compositional Performance Analysis

Átargets heterogeneous distributed systems

Ácalculates bounds on

Áworst-case/best-case response times (WCRT/BCRT)

Áend-to-end latency,

Áload,

Ábuffer sizes

Áframework for building tailored research tools

5th December 2017 | J. Schlatow | An introduction to pyCPA | Slide 3

Outline

ÁBrief historyof (py)CPA

ÁFoundations –informal introductionof CPA

ÁSystem model

ÁIterative analysisflow

ÁpyCPAoverview

ÁCore

ÁAnalysis extensions

ÁHand-on sessionoverview

5th December 2017 | J. Schlatow | An introduction to pyCPA | Slide 4

Brief history of (py)CPA

Á2005–the SymTA/S approach [1]

Ácommercialisedby Symtavision(since 2016: Luxoft)

Á2010-2012–pragmatic implementation in python by J. Diemer and P. Axer

Áfree, open-source, extensible, for academic use

Á2012–pyCPApublished at WATERS [2]

Ásince then

Áuse of pyCPAfor prototyping new analyses (extensions), e.g.

ÁEthernet (AVB), CAN

ÁNoCs, gateways

Árunnables, task chains

Á…

Ámaintenance and minor improvements of pyCPAcore

[1] R. Henia, A. Hamann, M. Jersak, R. Racu, K. Richter, and R. Ernst, “System Level Performance Analysis - the SymTA/S Approach”, IEE
Proceedings Computers and Digital Techniques, 2005
[2] J. Diemer, P. Axerand R. Ernst, “Compositional Performance Analysis in Python with pyCPA”, 3rd International Workshop on
Analysis Tools and Methodologies for Embedded Real-TImeSystems (WATERS), 2012

5th December 2017 | J. Schlatow | An introduction to pyCPA | Slide 5

Informal introduction to CPA

System model

ÁTasks and resources

ÁEvent model interfaces

Áeta/delta curves

Ástandard event models

CPA flow

Álocal scheduling analysis

Ábusy-window approach

Áevent model propagation

Ájitter propagation

Ábusy-times

5th December 2017 | J. Schlatow | An introduction to pyCPA | Slide 6

CPA system model

ÁResourcesĄ provide service (CPU time)

Áscheduled according to policy (e.g. round-robin)

ÁTasksĄ consume service

Áworst-case and best-case execution times (WCET/BCET)

Áphases:

ÁTask links Ą activation dependencies

Áflow of activation events (one task activates the other)

Áabstracted by event models

Resource

Task

Task

Resource

Task

execution

activation

completion

5th December 2017 | J. Schlatow | An introduction to pyCPA | Slide 7

Event model abstraction

processing

input events/ activationtrace output events/ activationtrace

Idea: An eventmodelisa worst-caseabstractionfrom the actualtrace.

+́/-(ɲǘ): minimum/maximum number of activations within any time window ɲǘ

+ɻ/-(n): maximum/minimum time interval between first and last activation of
any sequence of n activations (pseudo-inverse to ́ +/-(ɲǘ))

5th December 2017 | J. Schlatow | An introduction to pyCPA | Slide 8

From traces to event models

+́/-(ɲǘ): Minimum/Maximum number of activations within any time window ɲǘ

+ɻ/-(n): Maximum/minimum time interval between first and last activation of
any sequence of n activations (pseudo-inverse to ́ +/-(ɲǘ))

Example: ɖ+/-(5):

absolute time
ȹt=5

we see 1 events

Idea: Shift a window of lengthȹt=5 over the trace and count events

5th December 2017 | J. Schlatow | An introduction to pyCPA | Slide 9

From traces to event models

+́/-(ɲǘ): Minimum/Maximum number of activations within any time window ɲǘ

+ɻ/-(n): Maximum/minimum time interval between first and last activation of
any sequence of n activations (pseudo-inverse to ́ +/-(ɲǘ))

Example: ɖ+/-(5):

absolute time
ȹt=5

we see 4 events

Idea: Shift a window of lengthȹt=5 over the trace and count events

5th December 2017 | J. Schlatow | An introduction to pyCPA | Slide 10

From traces to event models

+́/-(ɲǘ): Minimum/Maximum number of activations within any time window ɲǘ

+ɻ/-(n): Maximum/minimum time interval between first and last activation of
any sequence of n activations (pseudo-inverse to ́ +/-(ɲǘ))

Example: ɖ+/-(5):

absolute time
ȹt=5

we see 3 events

Idea: Shift a window of lengthȹt=5 over the trace and count events

5th December 2017 | J. Schlatow | An introduction to pyCPA | Slide 11

From traces to event models

+́/-(ɲǘ): Minimum/Maximum number of activations within any time window ɲǘ

+ɻ/-(n): Maximum/minimum time interval between first and last activation of
any sequence of n activations (pseudo-inverse to ́ +/-(ɲǘ))

Example: ɖ+/-(5):

absolute time

+́ (ɲǘ=5): 4
-́ (ɲǘ=5): 1

5th December 2017 | J. Schlatow | An introduction to pyCPA | Slide 12

From traces to event models

+́/-(ɲǘ): Minimum/Maximum number of activations within any time window ɲǘ

+ɻ/-(n): Maximum/minimum time interval between first and last activation of
any sequence of n activations (pseudo-inverse to ́ +/-(ɲǘ))

Example: ɖ+/-(5):

absolute time

Similar approach to retrieve +ɻ/-(n):
Measure distance between any sequence of n events

In fact: ʵ ŀƴŘ ʹ Ŏŀƴ ōŜ ŎƻƴǾŜǊǘŜŘ ƛƴǘƻ ŜŀŎƘ ƻǘƘŜǊΗ

5th December 2017 | J. Schlatow | An introduction to pyCPA | Slide 13

From traces to event models

All traceswhichstaybetweenη+(Δt)/ -ɻ(n)and η-(Δt)/ +ɻ(n)satisfy the event model.

event model plots generated by pyCPA

5th December 2017 | J. Schlatow | An introduction to pyCPA | Slide 14

What if we don‘t have a trace

Standard event models:

Áperiodic(P)
-ɻ(n)=(n-1)*P

Áperiodicwith jitter (PJ)
-ɻ(n)=min(0,(n-1)*P-J)

Áperiodicwith jitter min. distance(PJd)
-ɻ(n)=min((n-1)*d,(n-1)*P-J)

Ásporadic(usingmin. interarrivaltime)

Ádefineyourown:
e.g. burstof c eventseveryT time.

5th December 2017 | J. Schlatow | An introduction to pyCPA | Slide 15

CPA overview

Event model abstraction renders analysis compositional

Áoutput event model can be computed from:

a) known input event model and

b) result of resource analysis

Ą iterative analysis flow

Resource

Task
input event model

ηin
+/-(Δt)

output event model
ηout

+/-(Δt)
Task

5th December 2017 | J. Schlatow | An introduction to pyCPA | Slide 16

CPA – iterative analysis flow

Step 1: Local analysis

ÁCompute each task’s worst-case behavior based on
critical instant scenario.

ÁDerive task output event models.

Step 2: Global analysis

ÁPropagate event models to dependent tasks.

ÁGo to step 1 if any event model has changed.

ÁOtherwise, terminate.

(Step 3: Path analysis)

ÁCompute end-to-end latencies.

ÁE.g. sum of WCRTs.

Local

Scheduling Analysis

Input Event Models

Local

Scheduling Analysis

Local

Resource Analysis

Output Event Models

Convergence or

Non-Schedulability?

No

Environment Model

Path Analysis

5th December 2017 | J. Schlatow | An introduction to pyCPA | Slide 17

resumption

preemption

Local resource analysis

CPU1

T1

T2

T2

Scheduling policy: SPP

(Static Priority Preemptive)

T1 > T2

T1

5th December 2017 | J. Schlatow | An introduction to pyCPA | Slide 18

Busy window (SPP)

Level-i busy window: time intervalduringwhichthe resourceisbusyexecutingTi or
anytaskwith priority higherthan Ti

ÁLargest (worst-case) busy window is computed from critical instant assumption!

T2

T1

preemption

resumption

level-2 busy windowlevel-2 busy window

5th December 2017 | J. Schlatow | An introduction to pyCPA | Slide 19

Busy-window analysis based on critical instant

T1

T2

largestlevel-2 busywindow

δ-
1(2)

δ-
1(4)

δ-
1(3)

δ-
2(2)

worst-case response time

5th December 2017 | J. Schlatow | An introduction to pyCPA | Slide 20

Response times

T1

T2

δ-
2(2)

Ὑ ÍÁØὄή ή worst-case response time found among busy times B(q)

ὄρ

ὄς

B(2)-δ-(2)

B(1)-δ-(1)

5th December 2017 | J. Schlatow | An introduction to pyCPA | Slide 21

Local resource analysis

Summary

Ábusy-window analysis depends on scheduler (e.g. round robin, SPP, SPNP, etc.)

Ábusy times are used to calculate worst-case/best-case response times ὙȾ

Áoutput event models can be computed from busy-window analysis

Ájitter propagation:

Á ὲ ὲ ὐ

Áwith output jitter ὐ Ὑ Ὑ

Ábetter: Derive event model from output trace that results from busy times
and input event model.

Ásee [3]

[3] S. Schlieckerand R. Ernst, “A Recursive Approach to End-To-End Path Latency Computation in Heterogeneous Multiprocessor
Systems”, Proc. 7th International Conference on Hardware Software Codesignand System Synthesis (CODES-ISSS), 2009

5th December 2017 | J. Schlatow | An introduction to pyCPA | Slide 22

pyCPA core

What comes with pyCPA:

ÁCPA system model

Áevent models (incl. transformation between eta/delta functions)

Álocal resource analyses (SPP, SPNP, round robin, TDMA, etc.)

Ácalculation/propagation of output event models

Áiterative analysis kernel

Ápath analyses

Ávisualisation

Áplotting of event models

Ásystem graphs

ÁGantt charts (SPP/SPNP only)

Ą CPA framework for researchers, not a tool for end users

5th December 2017 | J. Schlatow | An introduction to pyCPA | Slide 23

pyCPA model

Resource

Task

Task

Resource

Taskη+/-(Δt)

System

Resource Task

EventModelScheduler

pyCPAClasses(simplified)CPA components

other classes

5th December 2017 | J. Schlatow | An introduction to pyCPA | Slide 24

Setting up a system

ÁEasiest way to model systems: Python code

ÁInstantiate system model

ÁInstantiate and bind

ÁResources

ÁTasks

ÁLink dependent
tasks

ÁInstantiate event
models for tasks
with no predecessor

ÁOptional:

ÁAdd paths for latency
analysis

ÁAdd constraints

System graph generated by pyCPA from system model

5th December 2017 | J. Schlatow | An introduction to pyCPA | Slide 25

Analysis of a system

ÁSimply call analysis.analyze_system ()

ÁResults are returned in a dictionary, indexed by task names

ÁMore detailed analyses (e.g. path latency) are called separately

ÁResults can be visualized

ÁGantt charts of critical instant
scenario

ÁPlots of results via matplotlib

5th December 2017 | J. Schlatow | An introduction to pyCPA | Slide 26

Additional concepts and analyses

Junctions and forks

Áarbitrary strategies for joining/forking event models

Limited event-model propagation

Áevent-model propagation only at resource boundaries

Path analyses

Áevent-triggered paths (event chains)

Ábaseline: sum of WCRTs

Áimprovement for pipelined chains (pay burst only once)

Átime-triggered paths (cause-effect chains)

Ásum of WCRTs + sampling delay

Ą Stable framework for (almost) arbitrary analysis extensions.

5th December 2017 | J. Schlatow | An introduction to pyCPA | Slide 27

pyCPA analysis extensions

5th December 2017 | J. Schlatow | An introduction to pyCPA | Slide 28

Extension overview

Quite a few model and analysis extensions have been developed over the past
years, e.g.:

ÁCAN

ÁEthernet AVB

ÁNoCs

ÁGateways (multiplexing/demultiplexing)

ÁTask-chain busy-window
(propagation at resource boundaries)

ÁRunnables

Áetc.

Not all of them are publicly available (please ask the authors for academic use).

technology-specific model layer, e.g.:
Á frames = communication tasks
Á output ports = communication resources
Á traffic streams = paths

resource-analysis replacements
new propagation methods,
system-model refinements, etc.

5th December 2017 | J. Schlatow | An introduction to pyCPA | Slide 29

Example extension: task-chain analysis

Standard CPA:

Drawbacks:

Áinterference accounted multiple times (in each busy window)

Ą pessimistic WCRTs

Ą (too) many iterations

Áevent models get increasingly ‘bursty’ along the path

Resource

††

††

Resource

†

†Input
event model

Output
event model

propagated
event models

busy-window
analyses

propagated
event models

5th December 2017 | J. Schlatow | An introduction to pyCPA | Slide 30

Example extension: task-chain analysis

Task-chain busy-window analysis:

Benefits:

Áconsiders transactional chains, blocking relations

Ásignificantly better WCRTs and end-to-end latencies (and faster analysis)

Usage:

Resource

††

††

Resource

†

†Input
event model

Output
event model

propagated
event models

sequence
charts

thread
communication

(GraphML)

enriched
task graph
(GraphML)

ANALYZE
manual automated

(OS-specific)

5th December 2017 | J. Schlatow | An introduction to pyCPA | Slide 31

What to expect in the hands-on session?

The basics:

Ámodelling and analyzing a system

Áplotting

Ápath analysis

And more: use of junctions custom fork strategy

custom propagation

custom scheduler

5th December 2017 | J. Schlatow | An introduction to pyCPA | Slide 32

Thank you for your attention.

Source code:

https://bitbucket.org/pycpa/

Docs:

http://pycpa.readthedocs.io/en/latest/

https://bitbucket.org/pycpa/
http://pycpa.readthedocs.io/en/latest/

